ВИРТУАЛЬНАЯ РЕАЛЬНОСТЬ В РЕАБИЛИТАЦИИ ПАЦИЕНТОВ С ПОВРЕЖДЕНИЕМ СПИННОГО МОЗГА. ОБЗОР ЛИТЕРАТУРЫ
Аннотация
Виртуальная реальность (Virtual Reality, VR) —– быстро развивающаяся область медицины. Ее преимущества — гибкая интеграция с другими технологиями, игровая форма занятий. VR-технологии широко используются в лечении и реабилитации пациентов с патологией головного мозга. Научных публикаций, посвященных применению VR у пациентов с патологией спинного мозга, крайне мало.
Цель — анализ применения VR-технологий в реабилитации пациентов с травматической болезнью спинного мозга.
Материалы и методы. Поиск публикаций проводился в базе данных PubMed/Medline в период 2020–2025 гг. с использованием ключевых слов: травматическая болезнь спинного мозга (ТБСМ), позвоночно-спинномозговая травма, повреждение спинного мозга, тетраплегия, параплегия, виртуальная реальность, дополненная реальность, иммерсивные системы, реабилитация.
Результаты. Анализ публикаций проводили по пяти подгруппам в соответствии с задачами VR-терапии: баланс, ходьба, мануальные функции, боль, приверженность к лечению. Используя различные типы VR-устройств, в соответствии с протоколами, применяли игры, которые побуждали инвалидов двигаться, формируя произвольные движения, равновесие; повышали приверженность к лечению; способствовали уменьшению боли.
Заключение. VR — новая технология, способная дополнить комплекс мероприятий медицинской реабилитации пациентов с ТБСМ. Создавая интерактивную среду, VR-терапия повышает эмоциональную вовлеченность пациента в работу, приверженность к лечению, побуждает генерировать повторяющиеся движения, находить правильный паттерн, обеспечивает обратную связь.
Ключевые слова
Литература
Lu Y, Shang Z, Zhang W, Hu X, Shen R, Zhang K, et al. Global, regional, and national burden of spinal cord injury from 1990 to 2021 and projections for 2050: a systematic analysis for the Global Burden of Disease 2021 study. Ageing Res Rev. 2025; 103:102598. DOI: 10.1016/j.arr.2024.102598
Barbiellini Amidei C, Salmaso L, Bellio S, Saia M. Epidemiology of traumatic spinal cord injury: a large population-based study. Spinal Cord. 2022; 60(9): 812-819. DOI: 10.1038/s41393-022-00795-w
Cardile D, Calderone A, De Luca R, Corallo F, Quartarone A, Calabrò RS. The quality of life in patients with spinal cord injury: assessment and rehabilitation. J Clin Med. 2024; 13(6): 1820. DOI: 10.3390/jcm1306182
Leemhuis E, Esposito RM, De Gennaro L, Pazzaglia M. Go virtual to get real: virtual reality as a resource for spinal cord treatment. Int J Environ Res Public Health. 2021; 18(4): 1819. DOI: 10.3390/ijerph18041819
Wang L, Zhang H, Ai H, Liu Y. Effects of virtual reality rehabilitation after spinal cord injury: a systematic review and meta-analysis. J Neuroeng Rehabil. 2024; 21(1): 191. DOI: 10.1186/s12984-024-01492-w
Abou L, Malala VD, Yarnot R, Alluri A, Rice LA. Effects of virtual reality therapy on gait and balance among individuals with spinal cord injury: a systematic review and meta-analysis. Neurorehabil Neural Repair. 2020; 34(5): 375-388. DOI: 10.1177/1545968320913515
De Miguel-Rubio A, Rubio MD, Alba-Rueda A, Salazar A, Moral-Munoz JA, Lucena-Anton D. Virtual reality systems for upper limb motor function recovery in patients with spinal cord injury: systematic review and meta-analysis. JMIR Mhealth Uhealth. 2020; 8(12): e22537. DOI: 10.2196/22537
Sheehy L, Taillon-Hobson A, Sveistrup H, Bilodeau M, Fergusson D, Levac D, et al. Does the addition of virtual reality training to a standard program of inpatient rehabilitation improve sitting balance ability and function after stroke? Protocol for a single-blind randomized controlled trial. BMC Neurol. 2016;16: 42. DOI: 10.1186/s12883-016-0563-x
Ghaednia H, Fourman MS, Lans A, Detels K, Dijkstra H, Lloyd S, et al. Augmented and virtual reality in spine surgery, current applications and future potentials. Spine J. 2021; 21(10): 1617-1625. DOI: 10.1016/j.spinee.2021.03.018
Chen J, Or CK, Chen T. Effectiveness of using virtual reality-supported exercise therapy for upper extremity motor rehabilitation in patients with stroke: systematic review and meta-analysis of randomized controlled trials. J Med Internet Res. 2022; 24(6): e24111. DOI: 10.2196/24111
Rutkowski S, Rutkowska A, Kiper P, Jastrzebski D, Racheniuk H, et al. Virtual reality rehabilitation in patients with chronic obstructive pulmonary disease: a randomized controlled trial. Int J Chron Obstruct Pulmon Dis. 2020; 15: 117-124. DOI: 10.2147/COPD.S223592
Choi JY, Yi SH, Ao L, Tang X, Xu X, Shim D, et al. Virtual reality rehabilitation in children with brain injury: a randomized controlled trial. Dev Med Child Neurol. 2021; 63(4): 480-487. DOI: 10.1111/dmcn.14762
Domínguez-Téllez P, Moral-Muñoz JA, Salazar A, Casado-Fernández E, Lucena-Antón D. Game-based virtual reality interventions to improve upper limb motor function and quality of life after stroke: systematic review and meta-analysis. Games Health J. 2020; 9(1): 1-10. DOI: 10.1089/g4h.2019.0043
Aguilera-Rubio Á, Cuesta-Gómez A, Mallo-López A, Jardón-Huete A, Oña-Simbaña ED, Alguacil-Diego IM. Feasibility and efficacy of a virtual reality game-based upper extremity motor function rehabilitation therapy in patients with chronic stroke: a pilot study. Int J Environ Res Public Health. 2022; 19(6): 3381. DOI: 10.3390/ijerph19063381
Shin S, Lee HJ, Chang WH, Ko SH, Shin YI, Kim YH. A Smart glove digital system promotes restoration of upper limb motor function and enhances cortical hemodynamic changes in subacute stroke patients with mild to moderate weakness: a randomized controlled trial. J Clin Med. 2022; 11(24): 7343. DOI: 10.3390/jcm11247343
Gulcan K, Guclu-Gunduz A, Yasar E, Ar U, Sucullu Karadag Y, Saygili F. The effects of augmented and virtual reality gait training on balance and gait in patients with Parkinson's disease. Acta Neurol Belg. 2023; 123(5): 1917-1925. DOI: 10.1007/s13760-022-02147-0
Sana V, Ghous M, Kashif M, Albalwi A, Muneer R, Zia M. Effects of vestibular rehabilitation therapy versus virtual reality on balance, dizziness, and gait in patients with subacute stroke: a randomized controlled trial. Medicine (Baltimore). 2023; 102(24): e33203. DOI: 10.1097/MD.0000000000033203
Amir-Behghadami M, Janati A. Emerg population, intervention, comparison, outcomes and study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Med J. 2020; 37(6): 387. DOI: 10.1136/emermed-2020-209567
Leirós-Rodríguez R, Álvarez-Barrio L, Alonso-Cortés Fradejas B. Analysis of postural control in sitting by pressure mapping in patients with multiple sclerosis, spinal cord injury and friedreich's ataxia: a case series study. Reguera-García MM, Sensors (Basel). 2020; 20(22): 6488. DOI: 10.3390/s20226488
Nam SM, Koo DK, Kwon JW. Efficacy of wheelchair skills training program in enhancing sitting balance and pulmonary function in chronic tetraplegic patients: a randomized controlled study. Medicina (Kaunas). 2023;59(9):1610. DOI: 10.3390/medicina59091610
Nair MS, Kulkarni VN, Shyam AK. Combined Effect of virtual reality training (VRT) and conventional therapy on sitting balance in patients with spinal cord injury (SCI): randomized control trial. Neurol India. 2022; 70 (Supplement): S245-S250. DOI: 10.4103/0028-3886.360934
Goel T, Sharma N, Gehlot A, Srivastav AK. Effectiveness of immersive virtual reality training to improve sitting balance control among individuals with acute and sub-acute paraplegia: a randomized clinical trial. J Spinal Cord Med. 2023; 46(6): 964-974. DOI: 10.1080/10790268.2021.2012053
Alashram AR, Padua E, Hammash AK, Lombardo M, Annino G. Effectiveness of virtual reality on balance ability in individuals with incomplete spinal cord injury: a systematic review. J Clin Neurosci. 2020; 72: 322-327. DOI: 10.1016/j.jocn.2020.01.037
Scalise M, Bora TS, Zancanella C, Safa A, Stefini R, Cannizzaro D. Virtual reality as a therapeutic tool in spinal cord injury rehabilitation: a comprehensive evaluation and systematic review. J Clin Med. 2024; 13(18): 5429. DOI: 10.3390/jcm13185429
Koster RAJ, Alizadehsaravi L, Muijres W, Bruijn SM, Dominici N, van Dieën JH. Balance training in older adults enhances feedback control after perturbations. Peer J. 2024;12:e18588. DOI: 10.7717/peerj.18588
Wang C, Kong J, Qi H. Areas of research focus and trends in the research on the application of VR in rehabilitation medicine. Healthc (Basel). 2023; 11(14): 2056. DOI: 10.3390/healthcare11142056
Lim DY, Hwang DM, Cho KH, Moon CW, Ahn SY. A fully immersive virtual reality method for upper limb rehabilitation in spinal cord injury. Ann. Rehabil. Med. 2020; 44: 311-319. DOI: 10.5535/arm.19181
Al Nattah MMA, Tiberti S, Segaletti L. Semi-immersive virtual reality exercise therapy for upper limb rehabilitation in patients with spinal cord injury using the leap motion controller. Cureus. 2024; 16: e52261. DOI: 10.7759/cureus.52261
Bressi F, Cricenti L, Bravi M, Pannunzio F, Cordella F, Lapresa M, et al. Treatment of the paretic hand with a robotic glove combined with physiotherapy in a patient suffering from traumatic tetraparesis: a case report. Sensors. 2023; 23: 3484. DOI: 10.3390/s23073484
Zhang T, Li X, Zhou X, Zhan L, Wu F, Huang Z, et al. Virtual reality therapy for the management of chronic spinal pain: systematic review and meta-analysis. JMIR Serious Games. 2024; 12: e50089. DOI: 10.2196/50089
Chambel SS, Tavares I, Cruz CD. Chronic pain after spinal cord injury: is there a role for neuron-immune dysregulation? Front. Physiol. 2020; 11: 748. DOI:10.3389/fphys.2020.00748
Guerra-Armas J, Flores-Cortes M, Pineda-Galan C, Luque-Suarez A, La Touche R. Role of immersive virtual reality in motor behaviour decision-making in chronic pain patients. Brain Sci. 2023; 13(4): 617. DOI: 10.3390/brainsci13040617
Flores-Cortes M, Guerra-Armas J, Pineda-Galan C, La Touche R, Luque-Suarez A. Sensorimotor uncertainty of immersive virtual reality environments for people in pain: scoping review. Brain Sci. 2023; 13(10): 1461. DOI: 10.3390/brainsci13101461
Ahern MM, Dean LV, Stoddard CC, Agrawal A, Kim K, Cook CE, et al. The effectiveness of virtual reality in patients with spinal pain: a systematic review and meta-analysis. Pain Pract. 2020; 20(6): 656-675. DOI: 10.1111/papr.12885
Hisham H, Justine M, Hasnan N, Manaf H. Effects of paraplegia fitness integrated training on physical function and exercise self-efficacy and adherence among individuals with spinal cord injury. Ann Rehabil Med. 2022; 46(1): 33-44. DOI: 10.5535/arm.21127
Donegan T, Sanchez-Vives MV. Perception and control of a virtual body in immersive virtual reality for rehabilitation. Curr Opin Neurol. 2024;37(6):638-644. DOI: 10.1097/WCO.0000000000001321
Park S, Lee G. Full-immersion virtual reality: adverse effects related to static balance. Neurosci Lett. 2020;733:134974. DOI: 10.1016/j.neulet.2020.134974
Simón-Vicente L, Rodríguez-Cano S, Delgado-Benito V, Ausín-Villaverde V, Cubo Delgado E. Cybersickness. A systematic literature review of adverse effects related to virtual reality. Neurología. 2024; 39(8): 701-709. DOI: 10.1016/j.nrleng.2022.04.007
Weech S, Kenny S, Barnett-Cowan M. Presence and cybersickness in virtual reality are negatively related: a review. Front. Psychol. 2019; 10: 158. DOI: 10.3389/fpsyg.2019.00158
Saredakis D, Szpak A, Birckhead B, Keage HAD, Rizzo A, Loetscher T. Factors associated with virtual reality sickness in head-mounted displays: A systematic review and meta-analysis. Front Hum Neurosci. 2020; 14: 96. DOI:10.3389/fnhum.2020.00096
De Araújo AVL, Neiva JFO, Monteiro CBM, Magalhães FH. Efficacy of virtual reality rehabilitation after spinal cord injury: a systematic review. Biomed Res Int. 2019; 2019: 7106951. DOI: 10.1155/2019/7106951
Moulaei K, Bahaadinbeigy K, Haghdoostd A, Nezhad MS, Gheysari M, Sheikhtaheri A. An analysis of clinical outcomes and essential parameters for designing effective games for upper limb rehabilitation: a scoping review. Health Sci Rep. 2023; 6(5): e1255. DOI: 10.1002/hsr2.1255
Ссылки
- На текущий момент ссылки отсутствуют.








