ИСПОЛЬЗОВАНИЕ КЕРАМИЧЕСКОЙ 3D-ПЕЧАТИ ДЛЯ ЗАДАЧ ТКАНЕВОЙ ИНЖЕНЕРИИ: ОБЗОР


Билялов А.Р., Минасов Б.Ш., Якупов Р.Р., Акбашев В.Н., Рафикова Г.А., Бикмеев А.Т., Чугунов С.С., Киреев В.Н., Павлов В.Н., Кжышковска Ю.Г.

Аннотация


Реконструкция дефектов костной ткани — актуальная проблема современной хирургии. Реконструктивная медицина обладает большим потенциалом для восстановления или замены тканей и органов при их травмах и заболеваниях. Ежегодно около четырех миллионов операций проводится с применением костных имплантов, используемых для замещения дефектов костной ткани, возникших в результате травм, инфекций, новообразований и др. Существует большой выбор материалов, используемых для реконструкции дефектов костной ткани.

Цель — обобщить современные данные и дать представление о некоторых биокерамических материалах, используемых в настоящее время в области реконструкции костной ткани, методах изготовления имплантов, а также о их свойствах и клиническом применении.

Материалы и методы. Обзор литературы был проведен по базе научных статей PubMed,  eLibrary, Cochraine Library за период 2017-2022 гг.

Результаты. На основании литературных данных в обзоре представлены перспективные направления по модификации керамических имплантов для улучшения механических, физических характеристик, стимулирования процессов регенерации и использования их качестве систем доставки лекарственных средств для лечения инфекционных, онкологических и других заболеваний.

Заключение. Не существует единого мнения по оптимальной структуре, методам изготовления, модификации импланта. Поэтому необходимы дальнейшие исследования для определения «золотого стандарта» в изготовлении керамических имплантов.


Ключевые слова


биокерамика; биокерамические импланты; скэффолд; аддитивное производство; 3D-печать; модификация импланта; регенерация костной ткани

Полный текст:

Full Text PDF

Литература


Abbasi N, Hamlet SM, Love, RM, Nguyen, N. Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices.2020; (5): 1-9

An SH, Matsumoto T, Miyajima H, Nakahira A, Kim KH, Imazato S. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction. Dent Mater. 2012; 28(12): 1221-31. doi: 10.1016/j.dental.2012.09.001

Bai Y, Bai L, Zhou J, Chen H, Zhang L. Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis. Cell Immunol. 2018; 323: 19-32. doi: 10.1016/j.cellimm.2017.10.008

Baino F, Fiume E. 3D printing of hierarchical scaffolds Based on mesoporous bioactive glasses (MBGs)-fundamentals and applications. Materials (Basel). 2020; 13(7): 1688. doi: 10.3390/ma13071688

Bertin F, Piccardo A, Denes E, Delepine G, Tricard J. Porous alumina ceramic sternum: a reliable option for sternal replacement. Ann Thorac Med. 2018; 13(4): 226-229. doi: 10.4103/atm.ATM_80_18

Boccaccio A, Fiorentino M, Uva AE, Laghetti LN, Monno G. Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology - driven algorithm. Mater Sci Eng C Mater Biol Appl. 2018; 83: 51-66. doi: 10.1016/j.msec.2017.09.004

Bouchart F, Vidal O, Lacroix JM, Spriet C, Chamary S, Brutel A, et al. 3D printed bioceramic for phage therapy against bone nosocomial infections. Mater Sci Eng C Mater Biol Appl. 2020; 111: 110840. doi: 10.1016/j.msec.2020.110840

Burr DB, Allen MR. Basic and applied bone biology. Second-ed. Elsevier, 2019. 460 c.

Chang HI, Wang Y. Part 5 Cell - Biomaterial Interaction. Chapter 27. Cell responses to surface and architecture of tissue Engineering Scaffolds. In: Regenerative Medicine and Tissue Engineering - Cells and Biomaterials. Edited by Daniel Eberli. 2011. P.569-589

Charbonnier B, Manassero M, Bourguignon M, Decambron A, El-Hafci H, Morin C, et al. Custom-made macroporous bioceramic implants based on triply-periodic minimal surfaces for bone defects in load-bearing sites. Acta Biomater. 2020; 109: 254-266. doi: 10.1016/j.actbio.2020.03.016

Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, et al. 3D printing of ceramics: a review. Journal of The European Ceramic Society. 2019; 39(4):661-687. doi: 10.1016/J.JEURCERAMSOC.2018.11.013

Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel). 2019; 12(4): 568. doi: 10.3390/ma12040568

Dang W, Li T, Li B, Ma H, Zhai D, Wang X, Chang J, et al. A bifunctional scaffold with CuFeSe2 nanocrystals for tumor therapy and bone reconstruction. Biomaterials. 2018; 160: 92-106. doi: 10.1016/j.biomaterials.2017.11.020

Diao J, OuYang J, Deng T, Liu X, Feng Y, Zhao N, et al. 3D-plotted beta-tricalcium phosphate scaffolds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties in a critical-sized calvarial defect rat model. Adv Healthc Mater. 2018;7(17):e1800441. doi: 10.1002/adhm.201800441

Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and synthetic polymers for bone scaffolds optimization. Polymers (Basel). 202014; 12(4): 905. doi: 10.3390/polym12040905

Dremina NN, Trukhan IS, Shurygina IA. Cellular technologies in traumatology: from cells to tissue engineering. Acta biomedica scientifica. 2021; 6(2): 166-175. Russian (Дремина Н. Н., Трухан И. С., Шурыгина И. А. Клеточные технологии в регенерации сухожилий: от клетки до тканевой инженерии. Acta biomedica scientifica. 2021; 6(2): 165-175. doi: 10.29413/ABS.2021-6.2.19)

Du X, Fu S, Zhu Y. 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. Journal of Materials Chemistry B. 2018; 6(27): 4397–4412

Eliaz N, Metoki N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials. 2017; 10(4): 334. doi: 10.3390/ma10040334

Feng C, Zhang W, Deng C, Li G, Chang J, Zhang Z, et al. 3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration. Adv Sci (Weinh). 2017; 4(12): 1700401. doi: 10.1002/advs.201700401

Fouilloux V, Bertin F, Peltier E, Jouve JL. First sternal cleft repair using a porous alumina ceramic prosthesis in a 9-Year-Old child. European J Pediatr Surg Rep. 2019; 7(1): e20-e23. doi: 10.1055/s-0039-1688775

Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010; (3): 3867–3910

Ghassemi T.et al. Current concepts in scaffolding for bone tissue engineering. Archives of Bone and Joint Surgery. 2018. Vol. 6. No. 2.

Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A. Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg. 2018; 6(2): 90-99

Gul H, Khan M, Khan AS. 3 - Bioceramics: types and clinical applications. Editor(s): Abdul Samad Khan, Aqif Anwar Chaudhry. In: Woodhead Publishing Series in Biomaterials, Handbook of Ionic Substituted Hydroxyapatites. Woodhead Publishing, 2020. P. 53-83. https://doi.org/10.1016/B978-0-08-102834-6.00003-3

Hadji P, Colli E, Regidor PA. Bone health in estrogen-free contraception. Osteoporosis International. 2019;12 (30): 2391–2400

Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact. 2017; 17(3): 114-139

Hart NH, Newton RU, Tan J, Rantalainen T, Chivers P, Siafarikas A, et al. Biological basis of bone strength: anatomy, physiology and measurement. J Musculoskelet Neuronal Interact. 2020; 20(3): 347-371

Hollinger JO, Alvarez-Urena P, Ducheyne P, Srinivasan A, Baskin J, Waters H, et al. 6.2 Bone Tissue Engineering: Growth Factors and Cytokines. Editor(s): Paul Ducheyne, Comprehensive Biomaterials II. Elsevier, 2017. P. 20-53. https://doi.org/10.1016/B978-0-12-803581-8.10205-X

Hyc A, Moskalewski S, Osiecka-Iwan A. Growth factors in the initial stage of bone formation, analysis of their expression in chondrocytes from epiphyseal cartilage of rat costochondral junction. Folia Histochemica et Cytobiologica. 2021. 59(3): 178–186. doi: 10.5603/FHC.a2021.0017

Ji L, Song Z, Zeng F, Hu M, Chen S, Qin Z, et al. Research progress on controlled release of various growth factors in bone regeneration. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2019; 33(6): 750-755. Chinese. doi: 10.7507/1002-1892.201901116

Khalaf AT, Wei Y, Wan J, Zhu J, Peng Y, Abdul Kadir SY, et al. Bone tissue engineering through 3D bioprinting of bioceramic scaffolds: a review and update. Life (Basel). 2022; 12(6): 903. doi: 10.3390/life12060903

Kim JW, Yang BE, Hong SJ, Choi HG, Byeon SJ, Lim HK, et al. Bone regeneration capability of 3D printed ceramic scaffolds. Int J Mol Sci. 2020; 21(14): 4837. doi: 10.3390/ijms21144837

Kitaura H, Marahleh A, Ohori F, Noguchi T, Shen WR, Qi J, et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci. 2020; 21(14): 5169. doi: 10.3390/ijms21145169

Kulbakin DE, Choynzonov EL, Buyakova SP, Kulkov SN, Mukhamedov MR, Chernov VI, et al. Selection of reconstructive material for the restoration of the maxillofacial region bone defects in oncological practice. Head and neck. Russian Journal. 2018; 6(4):64–69. Russian (Кульбакин Д. Е., Чойнзонов Е. Л., Буякова С. П., Кульков С. Н., Муха-медов М. Р., Чернов В. И. и др. Выбор реконструктивного материала в восстановлении костных дефектов челюстно-лицевой области в онкологической практике // Голова и шея = Head and neck. Russian Journal. 2018. № 6(4). С. 64–69)

Kumar A, Kargozar S, Baino F, Han SS. Additive Manufacturing Methods for Producing Hydroxyapatite and Hydroxyapatite-Based Composite Scaffolds: A Review. Frontiers in Materials. 2019; 6. 313. 10.3389/fmats.2019.00313

Kwon SH, Jun Y, Hong SH, Lee IS, Kim HJ, Won Y. (2004). Calcium phosphate bioceramics with various porosities and dissolution rates. Journal of the American Ceramic Society. 2004; 85. 3129 - 3131. 10.1111/j.1151-2916.2002.tb00599.x

Li T, Chang J, Zhu Y, Wu C. 3D Printing of bioinspired biomaterials for tissue regeneration. Adv Healthc Mater. 2020; Apr 27:e2000208. doi: 10.1002/adhm.202000208

Lim HK, Hong SJ, Byeon SJ, Chung SM, On SW, Yang BE, et al. 3D-printed ceramic bone scaffolds with variable pore architectures. Int J Mol Sci. 2020; 21(18): 6942. doi: 10.3390/ijms21186942

Lin K, Sheikh R, Romanazzo S, Roohani I. 3D printing of bioceramic scaffolds-barriers to the clinical translation: from promise to reality, and future perspectives. Materials (Basel). 2019; 12(17): 2660. doi: 10.3390/ma12172660

Linh NTB, Abueva CDG, Jang DW, Lee BT. Collagen and bone morphogenetic protein-2 functionalized hydroxyapatite scaffolds induce osteogenic differentiation in human adipose-derived stem cells. J Biomed Mater Res B Appl Biomater. 2020; 108(4): 1363-1371. doi: 10.1002/jbm.b.34485

Lu Y, Lu X, Li M, Chen X, Liu Y, Feng X, et al. Minimally invasive treatment for osteonecrosis of the femoral head with angioconductive bioceramic rod. Int Orthop. 2018; 42(7): 1567-1573. doi: 10.1007/s00264-018-3919-6

Ma H, Li T, Huan Z, Zhang M, Yang Z, Wang J, et al. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG Asia Materials. 2018; 10. 1-14. 10.1038/s41427-018-0015-8

Ma H, Feng C, Chang J, Wu C. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater. 2018; 79: 37-59. doi: 10.1016/j.actbio.2018.08.026

Maiti SK, Shivakumar MU, Mohan D, Kumar N, Singh KP. Mesenchymal stem cells of different origin-seeded bioceramic construct in regeneration of bone defect in rabbit. Tissue Eng Regen Med. 2018; 15(4): 477-492. doi: 10.1007/s13770-018-0129-7

Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. Journal of Cellular Physiology. 2018; 233(4): 2937–2948

Marcello E, Maqbool M, Nigmatullin R, Cresswell M, Jackson PR, Basnett P, et al. Antibacterial composite materials based on the combination of polyhydroxyalkanoates with selenium and strontium co-substituted hydroxyapatite for bone regeneration. Front Bioeng Biotechnol. 2021; 9: 647007. doi: 10.3389/fbioe.2021.647007

Marques A, Miranda G, Silva F, Pinto P, Carvalho Ó. Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production. J Biomed Mater Res B Appl Biomater. 2021; 109(3): 377-393. doi: 10.1002/jbm.b.34706

Moreno Madrid AP, Vrech SM, Sanchez MA, Rodriguez AP. Advances in additive manufacturing for bone tissue engineering scaffolds. Mater Sci Eng C Mater Biol Appl. 2019; 100: 631-644. doi: 10.1016/j.msec.2019.03.037

Morgan EF, Unnikrisnan GU, Hussein AI. Bone mechanical properties in healthy and diseased states. Annual Review of Biomedical Engineering. 2018; 20: 119–143

Morris J, Kelly N, Elliott L, Grant A, Wilkinson M, Hazratwala K, et al. Evaluation of bacteriophage anti-biofilm activity for potential control of orthopedic implant-related infections caused by staphylococcus aureus. Surg Infect (Larchmt). 2019; 20(1): 16-24. doi: 10.1089/sur.2018.135

Mostafavi A, Abdullah T, Russell CS, Mostafavi E, Williams TJ, Salah N, et al. In situ printing of scaffolds for reconstruction of bone defects. Acta Biomater. 2021; 127: 313-326. doi: 10.1016/j.actbio.2021.03.009

Müller M, Fisch P, Molnar M, Eggert S, Binelli M, Maniura-Weber K, et al. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2020; 108: 110510. doi: 10.1016/j.msec.2019.110510

Nauth A, Schemitsch E, Norris B, Nollin Z, Watson JT. Critical-size bone defects: is there a consensus for diagnosis and treatment? J Orthop Trauma. 2018; 32 Suppl 1:S7-S11. doi: 10.1097/BOT.0000000000001115

Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: a review. Bioactive Materials. 2019; (4): 271–292

Ogay V, Mun EA, Kudaibergen G, Baidarbekov M, Kassymbek K, Zharkinbekov Z, et al. Progress and prospects of polymer-based drug delivery systems for bone tissue regeneration. Polymers (Basel). 2020; 12(12): 2881. doi: 10.3390/polym12122881

Oliveira ÉR, Nie L, Podstawczyk D, Allahbakhsh A, Ratnayake J, Brasil DL, et al. Advances in growth factor delivery for bone tissue engineering. Int J Mol Sci. 2021; 22(2): 903. doi: 10.3390/ijms22020903

Peng Y, Wu S, Li Y, Crane JL. Type H blood vessels in bone modeling and remodeling. Theranostics. 2020; 10(1): 426-436. doi: 10.7150/thno.34126

Pereira HF, Cengiz IF, Silva FS, Reis RL, Oliveira JM. Scaffolds and coatings for bone regeneration. J Mater Sci Mater Med. 2020; 31(3): 27. doi: 10.1007/s10856-020-06364-y

Pina S, Rebelo R, Correlo VM, Oliveira JM, Reis RL. Bioceramics for osteochondral tissue engineering and regeneration. Adv Exp Med Biol. 2018; 1058: 53-75. doi: 10.1007/978-3-319-76711-6_3

Putlyaev VI, Yevdokimov PV, Klimashina ES, Rodin IA, Safronova TV, Garshev AV, et al. Stereolithography 3D-printing of bioceramic scaffolds of a given shape and architecture for bone tissue regeneration. Inorganic Materials: Applied Research. 2019; (5): 28–40.Russian (Путляев В. И., Евдокимов П. В., Мамонов С. А., Зорин В. Н., Климашина Е. С., Родин И. А .и др. Стереолитографическая 3D-печать биокерамических матриксов заданной формы и архитектуры для регенерации костной ткани // Перспективные материалы. 2019. № 5. С. 28-40. DOI 10.30791/1028-978X-2019-5-28-40)

Qu H. Additive manufacturing for bone tissue engineering scaffolds. Materials Today Communications. 2020; (24): 101024

Radwan NH, Nasr M, Ishak RAH, Awad GAS. Moxifloxacin-loaded in situ synthesized Bioceramic/Poly(L-lactide-co-ε-caprolactone) composite scaffolds for treatment of osteomyelitis and orthopedic regeneration. Int J Pharm. 2021; 602: 120662. doi: 10.1016/j.ijpharm.2021.120662

Reshetov IV, Gaponov ME, Svyatoslavov DS, Bogoslovsky SG. Creation of implants by additive technologies for the reconstruction of head and neck tissues. Head and neck. Russian Journal. 2018; 4: 48-57. Russian (Решетов И. В., Гапонов М. Е., Святославов Д. С., Богословский С. Г Создание имплантатов методом аддитивных технологий для реконструкции тканей головы и шеи // Голова и шея = Head and neck. Russian Journal. 2018. № 4. С. 48-57. DOI 10.25792/HN.2018.6.4.48-57)

Sakthiabirami K, Soundharrajan V, Kang JH, Yang YP, Park SW. Three-dimensional zirconia-based scaffolds for load-bearing bone-regeneration applications: prospects and challenges. Materials (Basel). 2021; 14(12): 3207. doi: 10.3390/ma14123207

Salah M, Tayebi L, Moharamzadeh K, Naini FB. Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg. 2020; 42(1): 18. doi: 10.1186/s40902-020-00263-6

Schemitsch EH. Size matters: defining critical in bone defect size. Journal of Orthopaedic Trauma. 2017; (31): S20–S22

Seims KB, Hunt NK, Chow LW. Strategies to control or mimic growth factor activity for bone, cartilage, and osteochondral tissue engineering. Bioconjugate Chemistry. 2021; 5 (32): 861–878

Ñíguez Sevilla B, Rabadan-Ros R, Alcaraz-Baños M, Martínez Díaz F, Mate Sánchez de Val JE, López-Gónzalez I, et al. Nurse's A-phase-silicocarnotite ceramic-bone tissue interaction in a rabbit tibia defect model. J Clin Med. 2019; 8(10): 1714. doi: 10.3390/jcm8101714

Shastov AL, Kononovich NA, Gorbach EN. Management of posttraumatic long bone defects in the national orthopedic practice (literature review). Orthopaedic Genius. 2018; № 2 (24): 252-257

Steffi C, Shi Z, Kong CH, Wang W. Modulation of osteoclast interactions with orthopaedic biomaterials. J Funct Biomater. 2018; 9(1): 18. doi: 10.3390/jfb9010018

Tamay DG, Dursun Usal T, Alagoz AS, Yucel D, Hasirci N, Hasirci V. 3D and 4D printing of polymers for tissue engineering applications. Front Bioeng Biotechnol. 2019; 7: 164. doi: 10.3389/fbioe.2019.00164

Toosi S, Behravan J. Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. BioFactors. 2020; 3 (46): 326–340

Truong LB, Medina Cruz D, Mostafavi E, O'Connell CP, Webster TJ. Advances in 3D-printed surface-modified Ca-Si bioceramic structures and their potential for bone tumor therapy. Materials (Basel). 2021; 14(14): 3844. doi: 10.3390/ma14143844

Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2017; 3(3): 278-314. doi: 10.1016/j.bioactmat.2017.10.001

Wang C, Huang W, Zhou Y, He L, He Z, Chen Z, et al. 3D printing of bone tissue engineering scaffolds. Bioactive materials. 2020; 5(1): 82-91. 10.1016/j.bioactmat.2020.01.004

Wang J, Guo F, Chen G, Sun J, Tang Q, Chen L. Spatial-temporal patterns and inflammatory factors of bone matrix remodeling. Stem Cells Int. 2021; 2021: 4307961. doi: 10.1155/2021/4307961

Wei S, Ma JX, Xu L, Gu XS, Ma XL. Biodegradable materials for bone defect repair. Mil Med Res. 2020; 7(1): 54. doi: 10.1186/s40779-020-00280-6

Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci. 2017; 5(9): 1690-1698. doi: 10.1039/c7bm00315c

Yarikov AV, Gorbatov RO, Denisov AA, Smirnov II, Fraerman AP, Sosnin AG, et al. Application of additive 3D printing technologies in neurosurgery, vertebrology and traumatology and orthopedics. Journal of Clinical Practice. 2021; 12(1): 90-104. Russian (Яриков А. В., Горбатов Р. О., Денисов А. А., Смирнов И. И., Фраерман А. П., Соснин А. Г., и др. Применение аддитивных технологий 3D-печати в нейрохирургии, вертебрологии, травматологии и ортопедии // Клиническая практика. 2021. Т. 12, №1. C. 90-104. doi: 10.17816/clinpract64944)

Yuan J, Wang B, Han C, Huang X, Xiao H, Lu X, et al. Nanosized-Ag-doped porous β-tricalcium phosphate for biological applications. Mater Sci Eng C Mater Biol Appl. 2020; 114: 111037. doi: 10.1016/j.msec.2020.111037

Zafar MJ, Zhu D, Zhang Z. 3D Printing of bioceramics for bone tissue engineering. Materials (Basel). 2019; 12(20): 3361. doi: 10.3390/ma12203361

Zhang B, Zhang M, Sun Y, Li M, Han F, Wu C. Haversian bone-mimicking bioceramic scaffolds enhancing MSC-macrophage osteo-imunomodulation. Progress in Natural Science: Materials International. 2021; 31: 883–890

Zhang M, Lin R, Wang X, Xue J, Deng C, Feng C, et al. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci Adv. 2020; 6(12): eaaz6725. doi: 10.1126/sciadv.aaz6725


Статистика просмотров

Загрузка метрик ...

Ссылки

  • На текущий момент ссылки отсутствуют.