ПАТОГЕНЕТИЧЕСКИЕ АСПЕКТЫ ТРАВМАТИЧЕСКОГО ПОВРЕЖДЕНИЯ СПИННОГО МОЗГА И ТЕРАПЕВТИЧЕСКИЕ ПЕРСПЕКТИВЫ (ОБЗОР ЛИТЕРАТУРЫ)


Хохлова О.И.

Аннотация


Несмотря на достижения в области медицины, реабилитации  и ухода, пострадавшие с травматическим повреждением спинного мозга сталкиваются с серьезными проблемами, включающими ограниченность передвижения, потерю чувствительности, нарушение функции внутренних органов, высокую частоту вторичных осложнений и психоэмоциональных нарушений,  которые влияют на все аспекты их жизни. В настоящее время не существует эффективного лечения, способствующего регенерации аксонов и восстановлению утраченных неврологических функций после повреждения спинного мозга, что обусловлено сложностью и гетерогенностью его патогенеза.  Поэтому понимание патофизиологии повреждений спинного мозга необходимо для определения терапевтических стратегий.

Цель – представить современные данные о механизмах травматического повреждения спинного мозга. 

Результаты. Показано наличие терапевтических мишеней в механизмах вторичной травмы, которыми можно управлять с помощью соответствующих экзогенных вмешательств, что позволяет оптимистически рассматривать возможные терапевтические перспективы. 

Заключение. Учитывая многогранность патогенеза рассматриваемой патологии, следует принимать во внимание несколько сложных задач, в том числе регулирование интенсивности воспаления и перекисного окисления липидов, уменьшение гибели нервных клеток и процесса рубцевания, восстановление здоровых нервных клеток, стимулирование функциональной регенерации аксонов. В этих областях достигнут впечатляющий прогресс, однако все еще требуется много усилий, чтобы результаты экспериментальных исследований нашли свое применение в клинической практике.


Ключевые слова


травматическое повреждение спинного мозга; патогенез травматического повреждения спинного мозга; терапия травматического повреждения спинного мозга

Полный текст:

Full Text PDF Full Text HTML Full Text HTML (English)

Литература


Ahuja CS, Martin AR, Fehlings M. Recent advances in managing a spinal cord injury secondary to trauma. F1000Res. 2016; 5: F1000. 10.12688/f1000research.7586.1

Ahujaa CS, Fehlings M. Concise review: bridging the gap: novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem Cells Transl Med. 2016; 5(7): 914–924. doi: 10.5966/sctm.2015-0381

Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019; 10: 282. doi:10.3389/fneur.2019.00282

Almad A, Sahinkaya FR, McTigue DM. Oligodendrocyte fate after spinal cord injury. Neurotherapeutics. 2011; 8(2): 262–273. doi:10.1007/s13311-011-0033-5

Amemiya S, Kamiya T, Nito C, Inaba T, Kato K, Ueda M, et al. Anti-apoptotic and neuroprotective effects of edaravone following transient focal ischemia in rats. Eur J Pharmacol. 2005; 516(2): 125–130. doi:10.1016/j.ejphar.2005.04.036

Anderson MA, Burda JE, Ren Y, Ao Y, O'Shea TM, Kawaguchi R. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016; 532(7598): 195–200

Anthony DC, Couch Y. The systemic response to CNS injury. Exp Neurol. 2014; 258: 105–111. doi: 10.1016/j.expneurol. 2014.03.013

Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci. 2016; 10: 98. doi: 10.3389/fncel.2016.00098

Badner A, Hacker J, Hong J, Mikhail M, Vawda R, Fehlings MG. Splenic involvement in umbilical cord matrix-derived mesenchymal stromal cell-mediated effects following traumatic spinal cord injury. J Neuroinflammation. 2018; 15(1): 219. doi: 10.1186/s12974-018-1243-0

Badner A, Vawda R, Laliberte A, Hong J, Mikhail M, Jose A, Dragas R, Fehlings M. Early intravenous delivery of human brain stromal cells modulates systemic inflammation and leads to vasoprotection in traumatic spinal cord injury. Stem Cells Transl Med. 2016; 5(8): 991–1003. doi: 10.5966/sctm.2015-0295

Beattie MS, Farooqui AA, Bresnahan JC. Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma. 2000; 17(10): 915–925. doi: 10.1089/neu.2000.17.915

Blomster LV, Brennan FH, Lao HW, Harle DW, Harvey AR, Ruitenberg MJ. Mobilisation of the splenic monocyte reservoir and peripheral CX(3)CR1 deficiency adversely affects recovery from spinal cord injury. Exp Neurol. 2013; 247: 226–240. doi:10.1016/j.expneurol.2013.05.002

Borgens RB, Liu-Snyder P. Understanding secondary injury. Q Rev. Biol. 2012; 87(2): 89–127

Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun. 2019; 10(1): 3879. doi: 10.1038/s41467-019-11707-7

Brommer B, Engel O, Kopp MA, Watzlawick R, Muller S, Pruss H, et al. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain. 2016; 139(Pt 3): 692–707. doi: 10.1093/brain/awv375

Cai Y, Fan R, Hua T, Liu H, Li J. Nimodipine alleviates apoptosis-mediated impairments through the mitochondrial pathway after spinal cord injury. Curr Zool. 2011; 57: 340–349. doi: 10.1093/czoolo/57.3.340

Chaikittisilpa N, Krishnamoorthy V, Lele AV, Qiu Q, Vavilala MS. Characterizing the relationship between systemic inflammatory response syndrome and early cardiac dysfunction in traumatic brain injury. J Neurosci Res. 2018; 96(4): 661–670

Clausen BH, Degn M, Martin NA, Couch Y, Karimi L, Ormhoj M, et al. Systemically administered anti-TNF therapy ameliorates functional outcomes after focal cerebral ischemia. J Neuroin flammation. 2014; 11: 203. doi: 10.1186/PREACCEPT-2982253041347736

Couillard-Despres S, Bieler L, Vogl M. Pathophysiology of traumatic spinal cord injury. In: Neurological Aspects of Spinal Cord Injury. Weidner N., Rupp R, Tansey K, editors. . Switzerland: Springer International Publishing, 2017. P. 503-528

Cristante AF, Barros Filho TE, Marcon RM, Letaif OB, Rocha ID. Therapeutic approaches for spinal cord injury. Clinics. 2012; 67(10): 1219–1224

Davis AE, Campbell SJ, Wilainam P, Anthony DC. Post-conditioning with lipopolysaccharide reduces the inflammatory infiltrate to the injured brain and spinal cord: a potential neuroprotective treatment. Eur J Neurosci. 2005; 22(10): 2441–2450. doi:10.1111/j.1460-9568.2005.04447.x

Davis AR, Lotocki G, Marcillo AE, Dietrich WD, Keane RW. FasL, Fas, and death-inducing signaling complex (DISC) proteins are recruited to membrane rafts after spinal cord injury. J Neurotrauma. 2007; 24:823–834. doi:10.1089/neu.2006.0227

Dickens AM, Tovar YRLB, Yoo SW, Trout AL, Bae M, Kanmogne M, et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signal. 2017; 10: 7696. doi: 10.1126/scisignal.aai7696

Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp. Neurol. 2008; 209: 378–388. doi: 10.1016/j.expneurol.2007.06.009

Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, et al. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol. 2001; 24: 254–264. doi: 10.1097/00002826-200109000-00002

Dunai Z, Bauer PI, Mihalik R. Necroptosis: biochemical, physiological and pathological aspects. Pathol Oncol Res. 2011; 17: 791–800. doi: 10.1007/s12253-011-9433-4

Dyck S, Kataria H, Akbari-Kelachayeh K, Silver J, Karimi-Abdolrezaee S. LAR and PTPsigma receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia. 2019; 67: 125–145. doi: 10.1002/glia.23533

El Tecle NE, Dahdaleh NS, Hitchon PW. Timing of surgery in spinal cord injury. Spine (Phila Pa 1976). 2016; 41(16): E995–E1004

Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J.Neurosci. 2004; 24: 2143–2155. doi: 10.1523/JNEUROSCI.3547-03.2004

Fawcett JW, Schwab ME, Montani L, Brazda N, Muller HW. Defeating inhibition of regeneration by scar and myelin components. Handb. Clin. Neurol. 2012; 109: 503–522. doi: 10.1016/B978-0-444-52137-8.00031-0

Fehlings MG, Nakashima H, Nagoshi N, Chow DSL, Grossman RG, Kopjar B. Rationale, design and critical end points for the Riluzole in Acute Spinal Cord Injury Study (RISCIS): a randomized, double-blinded, placebo-controlled parallel multi-center trial. Spinal Cord. 2016; 54(1): 8–15. doi: 10.1038/sc.2015.95

Fehlings MG, Wilson JR, Tetreault LA, Aarabi B, Anderson P, Arnold PM, et al. A clinical practice guideline for the management of patients with acute spinal cord Injury: recommendations on the use of methylprednisolone sodium succinate. Global Spine J. 2017; 7(3 Suppl): 203S–211S. doi: 10.1177/2192568217703085

Feng Y, Liao S, Wei C, Jia D, Wood K, Liu Q, et al. Infiltration and persistence of lymphocytes during late-stage cerebral ischemia in middle cerebral artery occlusion and photothrombotic stroke models. J Neuroinflammation. 2017; 14: 248. doi: 10.1186/s12974-017-1017-0

Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Zh, et al. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci. 2011; 31: 14051–14066. doi: 10.1523/JNEUROSCI.1737-11.2011

Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012; 19(1): 107–120. doi: 10.1038/cdd.2011.96

Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019; 18(1): 56–87. doi: 10.1016/S1474-4422(18)30415-0

Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015; 1619: 1–11. doi: 10.1016/j.brainres.2014.12.045

Greenhalgh AD, David S. Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J. Neurosci. 2014; 34: 6316–6322. doi: 10.1523/JNEUROSCI.4912-13.2014

Hachem LD, Ahuja CS, Fehlings MG. Assessment and management of acute spinal cord injury: from point of injury to rehabilitation. J Spinal Cord Med. 2017; 40: 665–75. doi: 10.1080/10790268.2017.1329076

Hall ED. Antioxidant therapies for acute spinal cord injury. Neurotherapeutics. 2011; 8: 152–67. doi: 10.1007/s13311-011-0026-

Hall ED. Chapter 6: The contributing role of lipid peroxidation and protein oxidation in the course of CNS injury neurodegeneration and neuroprotection: an overview. In: Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Kobeissy FH, editor. Boca Raton, FL: CRC Press; Taylor & Francis; 2015. P.49-60

He M, Ding Y, Chu C, Tang J, Xiao Q, Luo ZG. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proc Natl Acad Sci USA. 2016; 113: 11324–9. doi: 10.1073/pnas.1611282113

Jefferson SC, Tester NJ, Howland DR. Chondroitinase ABC promotes recovery of adaptive limb movements and enhances axonal growth caudal to a spinal hemisection. J Neurosci. 2011; 31(15): 5710–5720. doi: 10.1523/JNEUROSCI.4459-10.2011

Joko M, Osuka K, Usuda N, Atsuzawa K, Aoyama M, Takayasu M. Different modifications of phosphorylated Smad3C and Smad3L through TGF-beta after spinal cord injury in mice. Neuroscience letters. 2013; 549: 168–172

Kapetanakis S, Chaniotakis C, Kazakos C, Papathanasiou JV. Cauda equina syndrome due to lumbar disc herniation: a review of literature. Folia Med (Plovdiv). 2017; 59 (4): 377-386. doi: 10.1515/folmed-2017-0038

Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol. Neurobiol. 2012; 46: 251–264. doi: 10.1007/s12035-012-8287-4

Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, et al. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell and tissue research. 2012; 349: 169–180

Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 2009; 29(43): 13435–13444. doi: 10.1523/JNEUROSCI.3257-09.2009

Kim Y-H, Ha K-Y, Kim S-Il. Spinal cord injury and related clinical trials. Clin Orthop Surg. 2017; 9(1): 1–9. doi: 10.4055/cios.2017.9.1.1

Klapka N, Muller HW. Collagen matrix in spinal cord injury. Journal of neurotrauma. 2006; 23: 422–435

Kotaka K, Nagai J, Hensley K, Ohshima T. Lanthionine ketimine ester promotes locomotor recovery after spinal cord injury by reducing neuroinflammation and promoting axon growth. Biochem Biophys Res Commun. 2017; 483: 759–764. doi: 10.1016/j.bbrc.2016.12.069

Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 2004; 4(4): 451–464

Lee D-Y, Park Y-J, Song S-Y, Hwang S-C, Kim K-T, Kim D-H.The importance of early surgical decompression for acute traumatic spinal cord injury. Clin Orthop Surg. 2018; 10(4): 448–454. doi: 10.4055/cios.2018.10.4.448

Liddelow SA, Barres BA. Regeneration: Not everything is scary about a glial scar. Nature. 2016; 532: 182–183

Liu M, Wu W, Li H, Li S, Huang LT, Yang YQ, et al. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J Spinal Cord Med. 2015; 38: 745–753. doi: 10.1179/2045772314Y.0000000224

Liu Y, Levine B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 2015; 22: 367–376. doi: 10.1038/cdd.2014.143

Middleton JW, Dayton A, Walsh J, Rutkowski SB, Leong G, Duong S, et al. Life expectancy after spinal cord injury: a 50-year study. Spinal Cord. 2012; 50: 803–811. doi: 10.1038/sc.2012.55

Pearn ML, Niesman IR, Egawa J, Sawada A, Almenar-Queralt A, Shah SB, et al. Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics. Cell Mol Neurobiol. 2017; 37: 571–585. doi: 10.1007/s10571-016-0400-1

Pinchi E, Frati A, Cantatore S, D’Errico S, La Russa R, Maiese A, et al. Acute spinal cord injury: a systematic review investigating miRNA families involved. Int J Mol Sci. 2019; 20(8): 1841. doi: 10.3390/ijms20081841

Robins-Steele S, Nguyen DH, Fehlings MG. The delayed post-injury administration of soluble fas receptor attenuates post-traumatic neural degeneration and enhances functional recovery after traumatic cervical spinal cord injury. J Neurotrauma. 2012; 29: 1586–99. doi: 10.1089/neu.2011.2005

Schachtrup C, Ryu JK, Helmrick MJ, et al. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J Neurosci. 2010; 30: 5843–5854

Schroeder GD, Kepler CK, Vaccaro AR. The use of cell transplantation in spinal cord injuries. J Am Acad Orthop Surg. 2016; 24: 266–275. doi: 10.5435/JAAOS-D-14-00375

Seifert HA, Offner H. The splenic response to stroke: from rodents to stroke subjects. J Neuroinflammation. 2018; 15:195. doi: 10.1186/s12974-018-1239-9

Shechter R, Raposo C, London A, Sagi I, Schwartz M. The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair. PloS one. 2011; 6: e27969

Shen YQ, Tenney AP, Busch SA, Horn KP, Cuascut FX, Liu K, et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science. 2009; 326(5952): 592–596

Silver J, Miller JH. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 2004; 5: 146–156. doi: 10.1038/nrn1326

Soderblom C, Luo X, Blumenthal E, Bray E, Lyapichev K, Ramos J, et al. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J. Neurosci. 2013; 33: 13882–13887. doi: 10.1523/JNEUROSCI.2524-13.2013

Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009; 32: 638–647. doi: 10.1016/j.tins.2009.08.002

Sun X, Jones ZB, Chen XM, Zhou L, So KF, Ren Y. Multiple organ dysfunction and systemic inflammation after spinal cord injury: a complex relationship. J Neuroinflammation. 2016; 13: 260. doi: 10.1186/s12974-016-0736-y

Tsuji O, Suda K, Takahata M, Matsumoto-Harmon S, Komatsu M, Menjo Y, et al. Early surgical intervention may facilitate recovery of cervical spinal cord injury in DISH. J Orthop Surg (Hong Kong). 2019; 27(1): 2309499019834783. doi: 10.1177/2309499019834783

Ulndreaj A, Badner A, Fehlingsa M G. Promising neuroprotective strategies for traumatic spinal cord injury with a focus on the differential effects among anatomical levels of injury. Version 1. F1000Res. 2017; 6: 1907. doi: 10.12688/f1000research.11633.1

Venkat P, Chen J, Chopp M. Exosome-mediated amplification of endogenous brain repair mechanisms and brain and systemic organ interaction in modulating neurological outcome after stroke. J Cereb Blood Flow Metab. 2018; 38: 2165–78. doi: 10.1177/0271678X18782789

Wang C, Liu C, Gao K, Zhao H, Zhou Z, Shen Z, et al. Metformin preconditioning provide neuroprotection through enhancement of autophagy and suppression of inflammation and apoptosis after spinal cord injury. Biochem Biophys Res Commun. 2016; 477: 534–540. doi: 10.1016/j.bbrc.2016.05.148

Wang W, Liu R, Su Y, Li H, Xie W, Ning B. MicroRNA-21-5p mediates TGF-β-regulated fibrogenic activation of spinal fibroblasts and the formation of fibrotic scars after spinal cord injury. Int J Biol Sci. 2018; 14(2): 178–188. doi: 10.7150/ijbs.24074

Wang Z, Zhang C, Hong Z, Chen H, Chen W, Chen G. C/EBP homologous protein (CHOP) mediates neuronal apoptosis in rats with spinal cord injury. Exp Ther Med. 2013; 5:107–111. doi: 10.3892/etm.2012.745

Wu J, Lipinski MM. Autophagy in Neurotrauma: Good, Bad, or Dysregulated. Cells. 2019; 8(7): 693. doi: 10.3390/cells8070693

Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol. 2018; 21: 137–51. 10.1016/j.cjtee.2018.02.003

Yates A.G, Anthony DC, Ruitenberg MJ, Couch Y. Systemic Immune Response to Traumatic CNS Injuries – Are Extracellular Vesicles the Missing Link? Front Immunol. 2019; 10: 2723

Yin X, Yin Y, Cao FL, Chen YF, Peng Y, Hou WG, Sun SK, Luo ZJ. Tanshinone IIA attenuates the inflammatory response and apoptosis after traumatic injury of the spinal cord in adult rats. PLoS One. 2012; 7: e38381. doi: 10.1371/journal.pone.0038381

Yu WR, Fehlings MG. Fas/FasL-mediated apoptosis and inflammation are key features of acute human spinal cord injury: implications for translational, clinical application. Acta Neuropathol. 2011; 122: 747–61. doi:10.1007/s00401-011-0882-3

Zhang N, Yin Y, Xu SJ, Wu YP, Chen WS. Inflammation & apoptosis in spinal cord injury. Indian J Med Res. 2012; 135: 287–96

Zhang Z., Chen J., Chen F., Yu D., Li R., Lv Ch., et al. Tauroursodeoxycholic acid alleviates secondary injury in the spinal cord via up-regulation of CIBZ gene. Cell Stress Chaperones. 2018; 23(4): 551–560. doi: 10.1007/s12192-017-0862-1

Zhou K, Sansur CA, Xu H, Jia X. The temporal pattern, flux, and function of autophagy in spinal cord injury. Int J Mol Sci. 2017; 18: E466. doi: 10.3390/ijms18020466

Zhu Y, Soderblom C, Krishnan V, Ashbaugh J, Bethea JR, Lee JK. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury. Neurobiology of disease. 2015; 74: 114–25


Статистика просмотров

Загрузка метрик ...

Ссылки

  • На текущий момент ссылки отсутствуют.